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Abstract-A mathematical treatment is given of the effect of thermal distortion on the thermal contact 
resistance between two semi-infinite solids of different materials. Good agreement is achieved with experi- 
mental observations of thermal rectification due to Clausing. It is shown that problems of this type some- 
times have no steady state solution and it is suggested that this is attributable to the discontinuous nature 
of the boundary condition for thermal contact. Expressions are given for the surface displacements due to 

steady state point and circular heat sources which could be of more general application. 
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NOMENCLATURE 

total area of actual contact ; 
radius of contact area ; 
radius of a cylindrical specimen ; 
arbitrary limit of integration ; 

(1 - VIZ) + (1 - vz2). 

El E2 ’ 

El (1 + Vl), u2 (1 + v2); 

Kl K2 

Young’s modulus ; 
thermal conductivity ; 
number of contact areas ; 
pressure ; 
total heat flux ; 
heat flux per unit area ; 

R,R, 
A* 

Rl +R; 

R,, R,. radii of curvature of the contacting 
surfaces when unheated ; 
distance from the axis of symmetry; 
temperature ; 
load ; 
mutually orthogonal co-ordinates in 
the interfacial plane ; 
co-ordinate perpendicular to x and y ; 
coefficient of thermal expansion ; 
component of thermal strain at the 
surface perpendicular to the inter- 
facial plane ; 

“9 Poisson’s ratio ; 

P, thermal contact resistance ; 

0, direct stress. 

Subscripts 
0, interface or mean value ; 

42, solids 1,2 ; 

7: total value in a system with several 
contact areas. 

1. INTRODUCTION 

THE HEAT flow through the interface between 
two apparently conforming solids is less than 
that which would be obtained through a single 
solid of the same overall shape and size and with 
the same temperatures at the boundaries. This 
is due to the inevitable roughness of the surfaces, 
which prevents the solids from making actual 
contact except at a few small areas within the 
apparent contact area. If the solids are good 
thermal conductors, most of the heat will flow 
through these actual contact areas in preference 
to passing between the non-contacting parts of 
the interface by radiation or conduction through 
the intervening gas (if any). This distortion of the 
heat flow causes an increase in thermal resistance 
which is known as the thermal contact resistance 
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or constriction resistance. This phenomenon has 
been the subject of intensive study in recent 
years because of its relevance to the conduction 
of heat from nuclear fuel elements. 

It has sometimes been noted that the contact 
resistance between dissimilar metals depends on 
the direction of heat flow. This process has 
become known as thermal rectification (by 
analogy with electrical rectification at semi- 
conductor interfaces) and various theories have 
been proposed to account for it [l-4]. One of the 
more convincing explanations was suggested by 
Clausing [6] and depends on the influence of 
thermal strain on thecontact conditions. Suppose 
heat is conducted across an interface from solid 1 
to solid 2. The input of heat to solid 2 is not uni- 
formly distributed, but occurs primarily at areas 
of actual contact. Thus. the material near to the 
actual contact areas will be hotter than at other 
parts of solid 2 and differential thermal expansion 
will occur, forcing the bulk of the solids apart. 
In the absence of any comparable effect in solid 1, 
this would tend to reduce the contact area and 
hence increase the constriction resistance. How- 
ever, the flow of heat ilr solid 1 is similarly non- 
uniform except that the OU@OW of heat is 
concentrated at theactual contact areas which are 
therefore cooler than the rest of the solid. Thus. 
for solid 1, the process is reversed ; the heat flow 
causes the contact regions to contract, allowing 
the solids to move together. The distribution of 
heat output from solid 1 must be equal to that of 
heat input to solid 2, but, if the solids are made of 
different materials, the thermal strains will 
generally differ and a change in constriction 
resistance will occur. If the contraction of solid 
1 is greater than the expansion of solid 2, the 
solids will move closer together, further areas 
ofthe surface will be brought into contact and the 
constriction resistance will fall. If the same heat 
flow were passed through the interface in the 
opposite direction, the thermal strains would all 
change sign and the solids would be forced apart 
causing an increase in constriction resistance. If 
the solids are made of the same materials, the 
thermal strains will be equal and opposite and 

no change in contact conditions or constriction 
resistance will occur. 

It is generally found that the actual contacts 
between solids are not uniformly distributed over 
the apparent contact area, but are grouped into 
regions (known as contour areas) because of the 
existence of long wavelength roughness (“wavi- 
ness”) in the machined surface [7]. The contour 
areas constitute an additional source of con- 
striction resistance which Clausing [6,X] claimed 
could be dominant in many thermal contact 
systems. He therefore carried out a series of 
experiments with contacting dissimilar solids of 
known waviness and found a considerable 
dependence of constriction resistance on the 
direction of heat flow. At low values of heat flow, 
when the rectification effect was small, the ob- 
served contact resistance was close to the value 
predicted theoretically from the known waviness 
of the profile on the assumption that the resis- 
tance due to constriction ofthe heat flow through 
the contour area was dominant (i.e. that there 
was perfect thermal contact between the solids 
throughout the contour area). However, Clausing 
did not extend his analysis to those cases where 
thermal strains were significant, but discussed 
these results in purely qualitative terms. 

In this paper, the effect of thermal strain on 
contact resistance is analysed for a number of 
particular systems with rotational symmetry. 
The results of this analysis are compared with 
Clausing’s experimental results in section 7 and 
a number of unusual features in the analysis are 
discussed in greater detail in sections 9, 10. 

2. METHOD OF SOLUTION 

In this analysis, we shall assume that all 
deformation is elaBtic and that the solids are in 
perfect thermal contact throughout the elastic 
contact area. The agreement between theory 
and experiment obtained by Clausing on the 
basis of these assumptions suggests that they 
are acceptable for his experimental system, 
but the implications of different contact con- 
ditions will be discussed in section 8. 
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Suppose that two semi-infinite solids with 
spherical surfaces are loaded against each other. 
In the absence of thermal strains, we can find 
the radius of the contact area, the distribution of 
pressure and the elastic displacements as func- 
tions of the applied load and the properties 
of the solids. However, if the extremities of the 
solids are maintained at different temperatures, 
heat will flow through the contact area causing 
thermal distortion which will itself affect the 
contact area. 

In order to solve this problem we shall assume 
that the final contact area is a circle of radius a. 
We can then find the steady state temperature at 
all points in the solids on the assumption that no 
heat flows across the interface except through the 
contact area. This temperature field will cause 
certain thermal strains which, in the absence of 
contact forces would distort the surface profiles 
Thus, by finding these thermal strains we can 
finally find the load which must be applied 
between the distorted solids to establish a 
contact area of the assumed size. This method 
gives a particular solution, the uniqueness of 
which will be discussed in section 6. 

tribution in an infinite solid, the direct stress 
tangential to the sphere of symmetry (and 
hence normal to any plane including the heat 
source) would be I 

cr =&{;jk”dr - 7’) (2) 

0 

where c( is the coeffkient of thermal expansion 
E is Young’s modulus and v is Poisson’s ratio 
(see TG: Artl36).* 
i.e. 

aclE 
A 

c = - 4n(l - v) Kr’ (3) 

The surface displacements of the semi-infinite 
solid can be found by superposing a surface 
pressure equal and opposite to the stress cr, 
since the symmetry of the infinite body problem 
precludes the possibility of shear stresses being 
transmitted across any plane including the heat 
source. 

The displacement (1) on the surface of a semi- 
infinite solid due to a point load Wat a distance r 
is 

3. THE POINT SOURCE SOLUTION 

It is convenient to find first the thermal strains 
produced by a point continuous heat source of 
strength 4 on the surface of a semi-infinite solid. 
This solution can then be extended by suitable 
integration. 

The temperature T at a distance r from the 
source is 

(TG: Art. 123). Thus, the normal surface dis- 
placement at a radius s due to the pressure 
distribution equal and opposite to that given by 
equation (3) is 

0) 2n 

A=- 

ss 

~(1 - v2)r dr de 

nE,/(r’ - 2rs cos 0 + s2) 
0 0 

where K is the thermal conductivity of the solid 
[9]. The thermal strains due to this temperature 
distribution can be obtained by considering the 
equivalent infinite solidproblemand superposing 
surface forces equal and opposite to the stresses 
transmitted across the surface plane.This method 
is described in greater detail in [lo]. Thus, if 
equation (1) represented the temperature dis- 

cc 2n 

w(l + 4 

ss 

dr d0 

= 47r2K o o J(r2 - 2rs cos 8 + s2)’ (5) 

This integral does not approach a limit as r 
tends to infinity. However, thisisa consequence of 
the assumption that the solids are semi-infinite. 
An essentially similar difficulty is encountered in 

* Specific sections of reference% [I l] and [12] are cited in 
this form. 
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two-dimensional potential flow and contact 
problems and it can be avoided by replacing 
the infinite upper limit to the integral by the finite 
quantity b such that b $ s. In this case. the 
integral can be evaluated to give 

;1 = qr*:l,; ‘) {log (46) - log (s)} (6) 

(see Appendix I). It should be noted that the term 
including the arbitrary limit b merely constitutes 
a bulk displacement of the surface and does not 
affect the profile. The value of b will not therefore 
affect the contact problem. 

4. HEAT FLOW THROUGH A CIRCULAR 
CONTACT AREA 

heat output from solid 1 and hence the tempera- 
ture fields in the two solids must be similar (i.e. 

The heat input to solid 2 must be equal to the 

isothermal surfaces will be symmetrical about 
the interfacial plane, but the actual temperature 
difference between any two pairs of correspond- 
ing isothermal surfaces will depend on the 
relationship between the conductivities of the 
materials). In particular, the temperature must 
be continuous through the contact area and 
hence the latter must be an isothermal surface 
whose temperature is 

T 

0 
= KITI + KzT2 

(K, + K2) 

(7) 

where K,, K,, T,, T,, are the conductivities and 
“temperatures at infinity” respectively in solids 
1 and 2. This result applies to any shape of con- 
tact area or distribution of contact areas between 
geometrically symmetrical solids.* 

* This result is completely general and independent of 
the assumptions of elastic deformation and perfect thermal 
contact provided that the term “contact area” is taken to 
mean any area which is in actual metallic contact. If some 
of the heat flow Between the solids takes place at areas which 
are not in actual contact (i.e. through surface films or an 
intervening gas), these areas will not be at the temperature 
TO, although this temperature must occur at some point 
in the intervening material. 

Thus, the distribution of heat flow through the 
contact area must be such as to maintain the 
contact area at the uniform temperature To. It can 
be shown that a temperature difference T 
between a circular area on the surface and the 
extremities of a semi-infinite solid causes a heat 
input (q) per unit area at a radius r given by 

2KT 
4= 

nJ(u’ - r2) (8) 

where 0 < r < a. The derivation of the mathe- 
matically similar result for contact pressures is 
is given in TG: Art. 124. 

Thus, the heat flow per unit area through the 
contact area is obtained by putting T equal to 
To - T,, i.e. from equations (7) and (8) 

Ko(T, - T2) 

4= 
TC&’ - r2) 

where 

2K,K, 
K” = (K, + T2)’ 

(9) 

(10) 

The surface displacements (2,) in solid 2, at a 
radius s, due to this heat input can be found by 
substituting for q in equation (6) and integrating 
over the contact area. Thus. 

A 

2 

= c2V1 - T2) Ko 

2n2 

0 2x 

ss 

{log(4b)-log[d’(s2-2rscos8+r2)]}rdrd0 __-__.____ 

0 0 
J(Z- r2) 

where 

c, = a,(1 + v2) 

K2 ’ 

(11) 

(12) 

This integral can be evaluated (see Appendix II) 
to give 
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I, = 
C,VI - T,) Ko a 

7c 
(13) 

for0 < s G aand 

A 

2 
= C2Vl - T,)&a 

7r 
log ; 

0 
(14) 

for s > a. The corresponding displacements in 
solid 1 can be found by transposing the subscripts 
1 and 2 in equations (13) and (14). 

The total heat flow rate(Q) through the contact 
area can be obtained by integrating equation (9) 
over the contact area and is 

Q = 2K,(T, - T,)a. (15) 

It is worth noting that if we approximate the 
heat flow through the contact area to the 
average value (Q/r&), the corresponding value 
of A2 for 0 < s < a (derived in Appendix II) 
is 

tog@ +; (-$]. (16) 

This approximate solution is compared with 
the exact solution in Fig. 1. In the range s > a, 
the two solutions are identical, but, within the 
heated area, a uniform heat input causes greater 
distortion than the distribution given by equa- 
tion (9). However, in complex systems, where an 
exact solution is impossible, a satisfactory 
approximation might be obtained by distribut- 
ing the total heat input uniformly over the con- 
tact area. 

5. PRESSURE DISTRIBUTION AT THE CONTACT 
AREA 

To complete the solution we have to find the 
distribution of pressure necessary to cause the 

thermally distorted solids to conform through- 
out the contact area. For this purpose, any 
bulk expansion of the solids is irrelevant and the 
profile given by equation (13) can be conveniently 
referred to the point s = 0. The equation of the 
distorted surface related to this point as origin is 

z2 = n,(o) - n,(s) (17) 

where the co-ordinate z2 is measured perpen- 
dicularly away from the interfacial plane. 

If the undistorted surface of solid 2 is a sphere 

v 
FIG. 1. Graphical representation of the surface distortion 
produced by (A) a constant temperature [equation (14)] 
and (B) a uniform heat input at a circular area radius (1 
[equation (16)l. Curve (C) shows the parabolic approxima- 

tion to (A) which is used in equation (19). 

of radius R2 within the contact area, the 
equation of the distorted surface will be ap- 
proximately modified to 

z2 = & + A,(O) - 1,(s). (18) 
2 

To obtain an analytical solution to the contact 
problem, the surface defined by equation (18) 
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can be approximated to the paraboloid passing 
through z?(O) and z,(a). the equation of which is 

‘= = 
‘_ + 22______..__ c (T - T,)&(l - log2) 

2R, 
s 1 (19) 

7ra 

and the corresponding equation for solid 1 is 

1 + 2 c (T, - T,)K,(l - log 2) 

‘* = 2R, nu 

The extent of the approximation involved here 
can be assessed by comparing curves (A) and 
(C) in Fig. 1. 

The pressure distribution (p) needed to make 
the surfaces defined by equations (19) and (20) 
conform throughout the contact circle is 

(c2 - c,)(T, - T,)Ko(l - 
7ca 

where 

j(aZ - s=), (21) 

(1 - v:, + (1 - vi) co Z ~ 
E, F ’ ‘2 

R,R, 
R” = (R, + R,) 

(see TG; Art. 125). The total load is obtained 
by integrating equation (21) over the contact 
area and is 

4a3 
w=-- 

3Roc0 

+ 8(c, - CJ (Tl - TJ K,(l - log 2) a2 

37X, 
. (22) 

The uniform heat flow equation (16) already has 
the necessary parabolic form and leads to the 
result 

4a3 
w=- 

3Roco 

+ 4(c2 - cd(T, - T2) KJ a2 

37X0 
. (23) 

Both these equations (22) and (23) reduce to the 
usual Hertzian relation for the contact of two 
spheres if 7’, = T, (no heat flow) or c, = c2 
(similar materials). 

6. UNIQUENESS OF THE SOLUTION 

Equation (22) gives the load (W) required to 
cause the solids 1. 2 to conform over a circular 
area of radius a, when their extremities are 
maintained at temperatures Ti, T2 respectively. 
However, we can equally regard a as the depend- 
ant variable in the equation provided that the 
uniqueness of the solution can be established. 

The surface displacements in a semi-infinite 
solid due to heating and normal loading satisfy 
a modified form of Laplace’s equation, but the 
uniqueness theorem is not valid for contact 
problems because of the influence of displace- 
ment on the boundary conditions for heat flow. 
In fact, if cZ > cl, there will generally be several 
steady state solutions. For example, consider 
two solids which make contact at a number of 
well separated contact areas when the heat flow 
is zero and suppose that, before the solids are 
placed in contact, heat is supplied to solid 2 
through one of these areas only, causing local 
expansion. This distortion will restrict the initial 
contact of the solids to the previously heated 
area and the heat flow through this area from 
solid 1 will tend to perpetuate the condition. 
Thus, if Tl - T2 is sufliciently large, there will 
be a separate state solution for each original 
contact area. As Tl - T2 is reduced, the number 
of solutions will also fall until, when Tl = T2, 
there is only one solution, since with no heat 
flow, the problem reduces to one of solid contact 
and the potential theory uniqueness theorem 
applies. There remains one stable solution for 
further reduction of Tl - T2 into the negative 
range [i.e. (c2 - cl) (Tl - T2) < 0] until a cer- 
tain critical temperature difference is reached 
beyond which there is no steady state solution. 
This result is discussed in section 10. 

For the axisymmetric problem considered in 
section 5, we can conveniently restrict our 
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attention to axisymmetric solutions on the 
grounds that the initial boundary conditions are 
axisymmetric. It can be shown from considera- 
tions of displacement curvature that the only 
axisymmetric steady state solution for heat flow 
in either direction involves a single circu- 
lar contact area and hence equation (22) 
defines a unique solution to the problem under 
discussion. 

7. THE EFFECT ON THERMAL CONTACT 

RESISTANCE 

The thermal contact resistance (p) is defined 
as the temperature difference (T1 - TZ) per unit 
heat flow (Q). i.e. 

P = CC - T,YQ 

‘K a =1 0 (24) 

from equation (15). Thus, the relationship 
between the applied load (W), the thermal 
contact resistance (p) and the heat flux (Q) can 
be found from equations (15) (22) and (24) and is 

W - lois 2) (~2 - ~1) Q + 1 
7t 2RoK;p2 

= 3c,WK,p. (25) 

The relation between p and Q for particular 
fixed values of the other parameters is shown in 
Fig. 2. The figure is presented in dimensional 
terms despite the consequent loss of generality, 
since the influence of load and initial curvature 
are thereby separated. For large positive values 
of heat flux, the thermal contact resistance 
approaches asymptotically to the linear relation 

PKo= 
2(1 - h2)@2 - CA Q 

37X, w (26) 

which is shown dotted in Fig. 2. The slope of 
this line is inversely proportional to c,W but 
independent of the initial radius of curvature of 
the surfaces (R,). For large negative values of 
Q (i.e. large heat fluxes from solid 2 to solid l), 
the contact resistance tends to zero. Figure 2 
only represents equation (25) for the case where 
c2 > cl, but the direction of positive heat flux 
(Q) can always be defined to satisfy this condition. 
Alternatively, it is easily verified from equation 
(25) that the interchange of materials of solids 
1 and 2 merely changes the sign of (c2 - cl) and 
is therefore equivalent to a reversal of heat flow 
direction as one would expect. The other terms 
in equation (25) only contain mean values of 

(C,-C,)O, n-l x w6 
FIG. 2. The effect of heat flux (Q) on contact resistance (p) 
from equation (26) for c,W= 2 x 10e9 m (A, B), 5 x 10m9 
m (C), 20 x 10m9 m (D) and R, = 100 m (A, C, D), loo0 m 

(B). 
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material properties and are therefore unaffected 
by an interchange of materials. 

The experimental dependence of contact 
resistance on heat flow observed by Clausing [6] 
using an aluminium-stainless steel interface 
is shown in Fig. 3. As originally presented, points 
corresponding to negative values of Q were 
placed in the positive quadrant, the direction of 
heat flow being noted. Two curves of resistance 
against heat flow were therefore obtained for 
each load, these being extrapolated to a single 
point on the axis Q = 0. In Fig. 3, Q is taken as 

. 

x 

0 

cl 

I I I 1 I 
-20 -10 

(r,-c,)Oe 

10 20 

m xo6 

FIG. 3. The experimental dependence of contact resist- 
ance on heat flux observed by Clawing [6]. (c,W = 2.7 
X 1o-g m (A), 5.25 x 10e9 m (x), 95 x lo+ m (?), 
R, = 17.7 m. The dotted curve is obtained from equations 
(27) and (28) for cow= 2.7 x 10e9 m; values of other pro- 

perties are taken from references [6,8]. 

positive from aluminium to stainless steel and 
the two sets of points form a continuous curve 
crossing the axis Q = 0 for each load. 

Clausing’s experimental system consisted of 
two cylindrical specimens with spherical con- 
tact surfaces. The contour area was significant 
in comparison with the cylinder cross section so 
that a direct comparison between Figs. 2 and 3 
is not strictly valid. However, one would expect 
the semi-infinite solid to exhibit the same quali- 
tative behaviour as the finite cylinder and this 

prediction is confirmed. The two sets of curves 
(Figs. 2 and 3) are similar in shape and the slopes 
of the asymptotic lines at high positive heat flux 
are found to be approximately inversely pro- 
portional to load as predicted. 

The heat flow through the contact area be- 
tween two cylinders spreads out within the solids 
until it is uniformly distributed over the cross 
section. Thus, the contact resistance and thermal 
distortion are due to the difirence between the 
actual heat flow conditions and those of uniform 
heat flow through the interface. We can therefore 
obtain an approximate solution to this problem 
by applying the same differential heat flow 
conditions to the semi-infinite solids. Thus, the 
thermal distortion produced at the surface of a 
cylinder radius a’ by a heat input Q over a circle 
radius a (a < a’) is assumed to be the same as 
that produced on the surface of a semi-infinite 
solid in which there is a heat input Q at the 
contact circle, radius a, and a heat output Q 
uniformly distributed over a concentric circle 
radius a’. The modified distortion equation for 
this problem can be found from equations 
(13) and (16) and leads to the relation 

4u3 
W=_ 

3&c, 

+ 2(c, - cAQ 
3X, 

. (27) 

An approximate value for the contact re- 
sistance (p) for the cylinder radius a’ can be 
found by a similar argument and is 

1 2 

p=2K,a-nK,a’ 
(28) 

A number of more precise numerical solutions 
have been obtained for this latter problem, the 
results of which confirm the validity of equation 
(28) in the range u/u’ < t. 

By eliminating the unknown contact area 
radius (a) from equations (27) and (28) a relation- 
ship between p and Q is obtained, which is 
shown dotted in Fig. 3 for the conditions of 
Clausing’s experiments at a load of 157N; 
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values of the material properties and the surface 
curvature are taken from references [6, 81. 
Reasonable agreement is achieved between 
theory and experiment. 

8. THE MICROSCOPIC CONTAm CONDITIONS 

The effects of thermal strain have so far only 
been discussed with reference to systems in 
which the solids are in perfect thermal contact 
throughout the elastic contact area. In practice, 
there will be a number of microscopic actual 
contacts distributed over this area and separated 
by non-contacting regions. 

The resistance to heat flow through such a 
group of actual contacts can be regarded as the 
sum of two parts; the microscopic resistance, 
which is the resistance which would be obtained 
if all the existing actual contacts were widely 
separated, and the macroscopic contact resist- 
ance, which is the additional resistance due to 
the grouping of the actual contacts within a 
finite contour area. For a wide range of 
distributions of actual contacts, the macroscopic 
contact resistance, as defined above, is approxi- 
mately equal to the resistance to heat flow be- 
tween two solids which are in perfect thermal 
contact throughout the contour area. The 
validity of this approximation is considered in 
greater detail by Greenwood [ 131. 

Thus, the analysis given in sections 2-7 can 
be applied to a system in which the contact is 
discontinuous, providing that the microscopic 
constriction resistance is small in comparison 
with the macroscopic or contour area resistance. 

If the microscopic resistance is significant, 
the total resistance will contain an additional 
term which must be found from a consideration 
of the actual contact conditions. Early theories 
of solid contact were based on the assumption 
that plastic deformation occurs at the areas of 
actual contact and that the total area of actual 
contact (A) is therefore linearly related to the 
total load. i.e. 

W= Ap (29) 

where p is the normal pressure at the actual 
contact areas and is tentatively identified with 
the indentation hardness of the softer material. 

It is clear that, if this theory were true, thermal 
strains would have no effect on the total area of 
actual contact. Thus, if the average size of the 
actual contacts remained constant, the only 
possible effect on contact resistance would be 
caused by a redistribution of actual contact 
areas over the apparent contact area, with a 
consequent change in the contour area resist- 
ance. At high negative heat fluxes, the load and 
consequently the actual contact areas would be 
almost uniformly distributed over the apparent 
contact area and the total contact resistance 
would tend to a finite limit. The value of this 
limit is the microscopic contact resistance and 
it would fall with increasing load since it 
depends on the total area of actual contact (A) 
given by equation (29). Clausing’s experimental 
results show just this tendency (see Fig. 3) and 
the limits of contact resistance at high negative 
heat fluxes are approximately inversely pro- 
portional to load, thus lending some support 
to a “plastic” theory of contact. 

On the other hand, recent theories of contact 
have shown that much of the evidence in favour 
of plastic contact conditions (such as the 
proportionality between tangential and normal 
forces in sliding) can be explained as a conse- 
quence of the geometrical properties of the 
solid surface [ 14,151. When two newly prepared 
solids are placed in contact, it is possible that 
much of the original deformation will be plastic, 
but work hardening will occur near the actual 
contact areas and one would expect any sub- 
sequent contact deformation to be primarily 
elastic. If this is so, the microscopic constriction 
resistance will be affected by thermal strain. 
However, there are two reasons for supposing 
that this effect will be small compared with the 
effect on the contour area. Firstly, the radius 
of curvature [R, in equation (25)] is generally 
much larger for the waviness of the surface than 
for the microscopic roughness. Thus, more 
thermal distortion is necessary to produce the 



760 J. R. BARBER 

same proportionate change in contact resistance. 
Secondly, fragmentation of the contact area 
tends to reduce the effect of thermal strain. 
Suppose there are n widely separated contact 
areas of equal thermal resistance (p), each 
carrying a load W and transmitting a heat flux 
Q, these quantities being related by equation 
(25). The total heat flux (Qr = nQ), the total load 
(Wr = nW) and total thermal resistance 
(or = p/n) are therefore given by 

2(1 - log 2) 

71 (c2 - 0% + 2R ;z&Z 
0 0 

= 3c, W,K,p,. (30) 

From this equation, it follows that, for given 
values of QT, W, and pn (8pT/8QT) falls with 
increasing n. It should, however, be noted that 
the problem has been oversimplified by assum- 
ing that the n contacts are ofequal size and widely 
separated. In practice, these conditions will not 
be met; any difference in size between contact 
areas will be exaggerated by a positive heat flux 
and interaction between the distortion fields of 
adjacent contacts also affects the pressure distri- 
bution, However, these effects occur on the 
scale of the contour area and are covered, albeit 
approximately, by an analysis of the latter. 

Lewis and Perkins [16] have recently des- 
scribed some experiments in which the thermal 
rectification effect was found to fall when the 
waviness of the surfaces was reduced. A sur- 
prising feature of these experiments is that, when 
the waviness and microscopic roughness were 
comparable, a reversed rectification effect was 
observed ; i.e. the contact resistance was found 
to be higher for heat flow from stainless steel to 
aluminium. A reversed rectification effect was 
also observed by Barzelay et cd. [l] and was 
attributed by Clausing [6] to thermal distortion 
induced by the existence of radial temperature 
gradients in the cylindrical specimens. However, 
Lewis and Perkins [16] and more recently 
Thomas and Probert [17] claim to have elimi- 
nated heat losses from the sides of the specimen 
and they still found a reversed rectification. 

Lewis and Perkins proposed that this 
phenomenon could be attributed to the effect 
of thermal strains on the miscroscopic scale, 
particularly if surface discontinuities exist in the 
contact region. However, a number ofdifficulties 
arise with this theory, some of which must also 
be considered in connection with the analysis 
developed in section 3-5. 

9. THE EFFECT OF SURFACE DISCONTINUITIES 

Consider a region of actual contact between 
two dissimilar metals and suppose that a 
discontinuity exists in one of the surfaces as 
shown in Fig. 4a. The heat flow through this 
interface may be considered as the sum of a 
uniform positive heat flux over the entire inter- 
face and a negative heat flux through the non- 
contacting area at the discontinuity, the latter 
component being chosen so as to make the total 
heat flux through this area zero. Providing the 
actual contact region is large compared with the 
dimensions of the discontinuity, the uniform 
heat flux through the interface will produce bulk 
expansion only and no distortion of the surface. 
Thus the distortion of the surface will be the 
same as that due to a negative heat flux through 
the non-contacting region. If the net heat flow 
is from solid 1 to solid 2 (where c1 > c,), the 
distortion produced will be as shown in Fig. 4b. 

(a) 2 
// / ‘// ‘/ ,’ / ,,,,I , 

,/// / 
\ \ 

(b) 2 
s , 

///i/‘/l’/ //,‘//// / / / / / J 

FIG. 4. The effect of a discontinuity in contact conditions, (a), 
Geometry for zero heat flow, (b, i), Transient response and 
Equilibrium state respectively proposed by Lewis and 
Perkins [15] for heat flow in the direction (1 -+ 2) where 



THERMAL DISTORTION EFFECTS 761 

However, it is clear that this cannot be an equili- 
brium condition since the heat flow through the 
interface will be affected by the changed contact 
conditions. Lewis and Perkins therefore propose 
that the system will eventually reach an equili- 
brium state such as that shown in Fig. 4c, where 
part of the original contact area is now out of 
contact. This would cause an increase in thermal 
resistance for the opposite direction of heat flow 
to that considered in section 5.* 

However, Fig. 4c cannot represent an equili- 
brium state. Consider the point A which is in 
contact before the heat flow occurs, but which 
is supposed to be removed from contact by 
thermal strain. The relative normal displacement 
[A = - (1, + A,)] of A due to thermal strain 
must be greater than that at any point which 
remains in contact. Thus, if Fig. 4c represents 
a possible equilibrium state, the point of maxi- 
mum relative displacement (not necessarily A) 
must lie in a region which is not in contact and 
hence at which there is no heat flow. At the point 
of maximum displacement, 

(%) + (3 <o (31) 

where x and y are any two mutually orthogonal 
co-ordinates in the interfacial plane. But it is 
easily verified that for the point source solution 
[equation (6)], the left-hand side of the inequality 
(31) is equal to zero everywhere except at the 
source (s = 0). Hence any integration of equation 
(6) will give a profile [A (x,y)] such that 

($) + @$) =O (32) 

throughout any unheated area. The maximum 
value of 1 cannot therefore occur in such an area, 

* For a more detailed development of this theory see 
Lewis and Perkins [16]. They claim that this effect will only 
be produced if the discontinuity is in the solid of lower 
thermal conductivity, but this is not necessary. The tempera- 
ture fields, thermal and elastic strains and contact pressures 
are only affected by the relative profiles of the surfaces to a 
first approximation. Thus, the argument is equally applicable 
to the geometry shown in Fig. 2(b) of reference 1161. 

nor can it occur at the remote boundaries of the 
solid, since for heat flow in the direction 1 to 2 
where c1 > c2, I decreases with distance from 
the contact area provided that this distance is 
sufftciently large. This is actually a particular 
two-dimensional case ofa general result in poten- 
tial theory. 

If a load is transmitted between the solids, the 
above argument still applies, provided that 
point A was in contact in the unloaded state, 
since, by a similar argument from equation (4), 
the inequality (31) cannot be satisfied in a non- 
loaded area. 

Thus, with heat flow in the direction 1 to 2, 
the solids cannot reach an equilibrium state 
with a reduction in contact area, but, as shown 
by Lewis and Perkins, neither can they remain 
in equilibrium without a change in contact area. 
This implies that either the behaviour of the 
system will be time dependent or that the 
controlling equations are inherently indeter- 
minate under certain circumstances. In order to 
investigate this matter further it is helpful to con- 
sider some particular examples. 

10. NON-EQUILIBRIUM CONDITIONS 

If two perfectly flat solids are placed in 
contact, the relationship between heat flux and 
contact resistance [equation (26)] reduces to 

2(1 - log 2) (c2 - cl)Q = 37rc0WK0p. (33) 

This equation gives a realistic result if (c2 - cl)Q 
is positive, but it implies that the contact 
resistance is negative for reversed heat flow. 
However, this is a spurious result which is a 
result of the existence of an infinite contact 
area. If instead ofputting l/R, = 0, we allow it to 
approach zero asymptotically, the curve in Fig. 
2 approaches the line given by equation (32) for 
large positive values of (c2 - c&Q and the axis 
K,p = 0 for large negative values. 

If the apparent contact area is restrained to a 
finite value by the surface profile of one of the 
solids, there are some loading conditions for 
which no equilibrium solution is possible. Thus, 
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suppose the solids areinitially flat and the contact 
area is geometrically restricted to a circle of 
radius a by machining a step in one surface. 
It was proved in section 9 that if heat flows from 
solid 1 to solid 2, where c1 > c2, no steady state 
solution is possible in which any part of the 
original contact area was removed from contact 
by thermal strain. Thus, if a solution exists, heat 
flow must take place through the contact circle 
radius a and the temperature field in the solids 
is similar to that considered in section 4. Thus, 
the thermal strains will also be similar and the 
pressure distribution needed to maintain the 
contact over the entire circle is obtained from 
equation (21) by putting l/R, = 0. i.e. 

P= 

4(1 - log 2) (c2 - Cl) (Tr - 55) K, &’ - s2) 

7cLcOa 

(34) 
However, (Ti - T2) (c2 - cr) is now negative 
so that tensions must be applied between the 
surfaces to maintain them in conformity. This is 
not an acceptable solution, but we can find one 
by superimposing a pressure distribution chosen 
so as to cause an equal displacement at all parts 
of the contact circle and of such value as to make 
the total pressure just positive at all points. 

The pressure distribution 

p’ = &‘c-s’) (35) 

over the contact area produces an equal dis- 
placement at all points 0 ,< s < a [see TG: Art. 
124 and cf. equation (S)], where C is a constant. 
The minimum positive pressure distribution to 
achieve conformity will occur when the constant 
C is chosen to make the minimum value of 
(p’ + p) equal to zero. This minimum pressure 
occurs at s = 0, hence 

Gin 
- = 

a 

4(1 - 1% 2)(c, - C2)Vl - T,)Kl 

lT2Cg 

t3q 

For this value, 

p+p’= 

4(1 - log2)(c, - c2)vl - T,)Kl 

7C2Co 
. (37) 

#2” s2) - J@’ - s2) 1 a ’ 

The integral of equation (37) over the contact 
area gives the minimum load (IV) which will 
cause the solids to conform. i.e. 
w= 

tq1 - log 2) (cr - CJ (Tr - T,) KoaZ 

371co 
(38) 

If the load is greater than this value, the constant 
C in the pressure component p’ will be increased 
causing a greater bulk deformation, but main- 
taining conformity between the solids for 
0 < s < a. However, for loads less than K 
there is no distribution of positive pressure which 
will achieve conformity and hence no solution is 
possible. 

It is clearly theoretically possible to write down 
a set of integro-differential equations for this 
system relating the past history of heat input 
to the instantaneous temperature field and the 
latter to the thermal strains and the consequent 
contact pressure distribution. These equations 
would be adequate to determine the dynamic 
behaviour of the system provided that suitable 
boundary conditions were specified (e.g. that the 
two solids, initially at uniform, but different, 
temperatures, are pressed together with a con- 
stant force after time t = 0). The existence of this 
determinate set of equations, one of which (the 
relation between temperature and heat flow) 
contains time dependent terms, suggests that a 
time dependent solution could be obtained for 
values of the contact force less than that given by 
equation (38). Presumably such a solution 
would show that any given point in the contact 
circle would experience periods in contact and 
periods out of contact. Periodic variations in 
contact resistance were observed by Clausing 
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(18) at low normal loads and it is tempting to 
attribute them to this mechanism. However, the 
observed period was long (l-2 h) in comparison 
with the time needed to reach a steady tempera- 
ture in the specimens (15-20 mm). Furthermore, 
there are systems for which even a time dependent 
solution is impossible. For example, consider a 
“solid” made up of two thermally insulated rods, 
of shghtly differing lengths, clamped together at 
one end. If this solid is constrained to move in the 
direction of the rod axes and is lightly loaded 
against a cooler surface, contact will initially 
occur on the longer rod only, but the latter will 
contract until the second rod makes contact. 
However, the heat flow from rod 2 will be initially 
higher than that from rod 1, causing the contact 
to break an infinitesimal time after it has been 
made. This process will be repeated indefinitely. 
Thus, the solution for the transient heat flow 
from rod 2 to the other solid is a periodic function 
of infinite frequency with a finite mean value. 

This is not an acceptable solution, but it 
demonstrates that the difficulty arises from the 
fact that an infinitesimal displacement makes 
the difference between contact and non-contact 
conditions. In a practical system, this will not be 
true ; even if there is no intervening gas and the 
surfaces are uncontaminated a finite local 
displacement must be necessary to effect the 
contact. This “contact displacement” may be 
completely negligible in comparison with the 
surface displacements due to contact pressures 
and thermal expansion, but it introduces the 
possibilityofconditionsintermediatebetweenthe 
extremes of infinite and zero local contact 
resistance. With this altered boundary con- 
dition, a stable solution can be found in which 
rod 2 is in imperfect contact with the other solid. 
Thus, the heat flow through rod 2 will be less than 
that through rod 1 and the thermal strain will be 
less. The actual value of heat flow will be deter- 
mined by the condition that the difference in 
thermal contraction must be equal to the 
original difference in length of the rods, 

In general,areas which would be removed from 
contact by thermal distortion will tend to reach 

an equilibrium state in which a finite local 
thermal resistance reduces the local heat input 
to the value necessary to maintain this imperfect 
contact condition. In a practical contact situa- 
tion, it follows that, for loads less than the 
critical value, there will be some areas of 
imperfect contact and hence the contact resis- 
tance will be increased. Thus, with this modi- 
fication of the boundary conditions of the prob- 
lem, a reversed rectification effect could be 
produced. However, it is doubtful whether an 
experimental system wouldever have the required 
geometry on the microscopic scale, since the 
effect depends on the existence of extensive actual 
conformity of the solids in the unloaded state. 
This is unlikely to occur. It is more probable on 
the “contour area” scale, in which case the areas 
of imperfect contact would be those in which the 
density of actual contacts was low. However, 
Lewis and Perkins’ experimental results show 
that reversed rectification becomes more pro- 
nounced at high nominal pressures, whereas the 
theory developed above predicts that the effects 
should only be observed below a certain 
critical load, such as that given by equation 
(38) for the circular contact system. This suggests 
that the experimental evidence cannot be 
entirely explained as a consequence of thermal 
distortion. Furthermore, Williams [ 191 and 
Thomas and Probert [17] have observed direo 
tional effects in the thermal resistance between 
solids differing in surface geometry, but of similar 
materials. Unless radial temperature gradients 
existed, these results could not have been caused 
by thermal distortion. They are attributed by 
Thomas and Probert to the potential barrier 
produced by the interfacial oxide layers, this 
explanation of thermal rectification being origi- 
nally suggested by Moon and Keeler [S]. It 
therefore appears that at least two independent 
mechanisms are involved in existing observa- 
tions of thermal rectification. 

11. CONCLUSIONS 

This paper has been primarily concerned with 
developing an analysis of the interaction between 
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thermal strain and interfacial thermal resistance. 
The general method of approach, outlined in 
section 2, could be applied to a wide range of 
problems and particular solutions are here 
obtained for the case of two large solids with 
axisymmetric curved surfaces in good thermal 
contact at a circular area. The theory can be 
applied to the contact of rough solids, providing 
that the microscopic constriction resistance is 
small in comparison with the contour area resis- 
tance. It is found that the contact resistance 
depends on the heat flow between the solids, 
the relationship being given by equation (25). This 
relationship is plotted in Fig. 2 and shows a 
striking qualitative agreement with experimental 
results due to Clausing [6] for a similar type of 
system. Reasonable qualitative agreement is 
obtained when the theory is modified to take 
account of the finite size of the solids. 

Some experimental evidence exists to suggest 
that the direction of rectification can be reversed 
when the surfaces are nearly flat. Lewis and 
Perkins [16] have recently suggested that, with 
certain special surface geometries, which they 
claim are typical of flat ground surfaces, thermal 
strain could also account for this phenomenon. 
It is shown in section 9 that this is not possible 
with the usual boundary conditions, but that for 
this type of geometry there is no steady state 
solution. A similar result is obtained for the 
contact of two large solids at a limited contact 
area, if the applied load is less than a certain 
limiting value, given by equation (38) for a 
circular area. It is suggested that this paradoxical 
result is a consequence of the assumption that 
any part of the sur[ace must be either in perfect 
contact or out of contact. In practice, interme- 
diate states will occur in which the local pressure 
is very light and a finite temperature difference 
exists locally at the interface. This modified 
boundary condition introduces the possibility of 
reversed rectification with certain geometries, but 
the characteristics of Lewis and Perkins’ experi- 
mental results are not adequately explained 
by such a theory. There also exists some evidence 
of thermal rectification between solids of similar 

materials which cannot be attributed to thermal 
distortion. 
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APPENDIX I 

The integral in equation (5) may be written 

sZ.l bZI 

I, = 
ss 

dr d0 dr d6 

o 0&’ - 2rs cos 13 + s’) + - 2rs cos 6 + s’) 

(A:l) 
with a change of variable this becomes 

,2n 1 2n 

(4.2) 

from GR: 3.674.1. = /4K(x)dx 1 ‘F 

0 J/b 

(A.3) 

As y + 0, K(y) ,+ x/2 + o(_$). 
Thus, ifs 6 b, 

I, =/I 4K(x)dx +[ [4K(y)$ 2n1 dy+j;by(A.4) 

This may be evaluated to give 

I, = 8G + 4x log 2 - 8G - 2x log (s/b) 

(GR: 6.141.1 and 6.142) 

= 2n log (4&s). (A.5) 

APPENDIX II 

The integral in equation (11) may be written 

“2X 

I, =~ 
JJ 

{log (4bp) - f log (1 - 2x cos 19 + x’)} r dr d0 

00 
$a2 - r2) 

where x = rjs. 
i.e. 

(A.6) 

I, = 2nalog(4b/s) - f 
0 

log(1 - 2xcos6 + x2)rdrd0 

J(a’ - 9) . 
00 

(A.7) for s > a. 

The remaining integral is zero in the range 0 < x < 1 (i.e. 
0 i r < s) (see GR: 4.224.14). Thus, if a < s, we have 

I, = 2na log (4b/s). 

However, if a > s, 1, contains the additional term 

(‘4.8) 

1,=-j ss log(1 - 2~~0~0 + x’)rdrdB 

J(a’ - 9) 
SO 

(I 

s 2n log (r/s) r dr 
=- 

J Jb' - r2) (4.9) 

(by GR : 4.224.14). 
Integrating by parts and using GR : 2.275.3 we get 

1, = 2x { J(a’ - 3) + alog [a/s - J(a2/sz - I)]} (A.lO) 

and for a > s, 

I, = 2x [a log {46/s [a/s - J(a*/s’ - l)]} + J(a2 - s’)] 
(A.ll) 

which is the required result. 
The average value of heat flow through the contact area is 

If this equation is used in place of equation (9) we get 

(A.12) 

- log [J(s’ - 2rs cos 0 + y*)]) r dr d0. (A.13) 

This expression may be evaluated using GR : 4.224.14 to give 

{log (4b/a) + i_(l T ?/a’)} (A.14) 

for0 < s < aand 

I 

2 
= CAT - T,VGa 

log W/s) (A.15) 
i-r 

L’EFFET DE DISTORTION THERMIQUE SUR UNE RFSISTANCE 

R&urn&-& traite mathtmatiquement l’effet de distortion thermique sur la resistance thermique de 
contact entre deux solides semi-infinis a proprietbs differentes. 11 est constatk un bon accord avec les 
observations experimentales de rectification thermique due a Clausing. On montre que des problemes de ce 
type n’ont pas parfois de solution Ctablie et on suppose que ceci est dQ a la nature discontinue de la condition 
limite de contact thermique. On donne des expressions representant les d&placements de la surface dfts au 
point d’etat permanent et aux sources de chaleur circulaires qui pourraient i%re d’application plus gtntrale. 
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DER EINFLuS.9 THERMISCHER VERZERRuNG AUF DEN OBERGANGSWIDERSTAND 
Zusammenfassung-Die Wirkung der thermischen Verzerrung auf den thermischen ubergangswiderstand 
zwischen zwei halbunendlichen Korpem aus verschiedenen Materialien wird mathematisch behandelt. 
Eine gute Ubereinstimmung mit experimentellen Beobachtungen der therm&hen Ausrichtung nach 
Clausing ist erreicht worden. Es wird gezeigt, dass Probleme dieser Art gelegentlich keine station&e 
Losung haben, und es wird angenommen, dass diese Erscheinung der diskontinuierlichen Natur der 
Randbedingung bei thermischem Kontakt zugeschrieben werden kann. Es werden FormeJn angegeben 
fur die Oberflachenverschiebung, infolge stationlrer Punktquellen und kreisformiger Warmequellen. Sie 

konnen fur eine allgemeinere Anwendung brauchbar sein. 

B,rIMHHHE TEPMMHECKOH #DD,OPMALH4H HA HOHTAKTHOE 
COHPOTMB~EHME 

iiHHOTaqHJi-npeAnaraeTcR MaTeMaTIIYeCitOe OiIIlCaHCle iI.rIIIRHIiF( TepMIlYeCWJii ,I&ec)OpMaqaH 

Ha TenJiOBOe KOHTaKTHOe COiipOTIIB;IeHMe Meway AByMH no.?yOrpaHIiqetiHIJMII TBepAbIMIf 

TeJiaMIl Ii3 pa3JiHWbIX MaTepHazIOB. ~o.rlyYeiio XOpoLiiW COOTBeTCTBIIe C 3iCCIIepIiMeHTaJIbHbiMIf 

pe3ynbTaTaMIr ECnagsIuira. rIoiwaH0, 1iTo 3azawf 3~0ro TIiiia Iraor~a He CIMeiOT cTauiio- 

iiapiioro peiiieaurr, II caeziaiio iipe;lrio~ioxeiiIre, VT0 3TO Ii~JOII~XO~IIT 3a CqeT iipe~biBIlCT‘,rO 

XapaKTepa rpaHwiirbix 3_Cnordi Ami TeilJiOiIOi’O iioiiTaiiTa. npe~aaraioTcri Bbipameiirw finfi 

iiepeMe~eHIiiI iiOBepXiiOC~TIi 6JiaiWdapH CTa~IKWa~JiibiM TO’ie’4HbiM II iil)yiYJBb.iM TeiiJlOBbIM 

IICT0YiiI1KaM, IiOTOpbIe MOrvT IlMeTb 6O.-ieC Ot%I@e iipIlMeHeillir. 


